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Addressing Visualization of X-Ray Images: Toward
an Al-Based Post-processing Strategy for Enhanced
Image Presentation Quality

Sonja Pappenberger, Peter Keuschnigg, Phillip Steiniger, and Daniel Sieber

Abstract—The employment of artificial intelligence (AI) and in
particular its subset deep learning (DL), has opened up a variety
of possibilities for novel approaches in multiple fields, including
medical image analysis. One of the key tasks in this domain is
image enhancement, which is of particular importance for x-ray
images, as they frequently suffer from poor image quality due
to noise, scattering, blurring, or low contrast. Window-leveling
is an image enhancement technique that is often employed to
improve the visual representation of an image.

In this study, we present an Al-based approach for automatically
adjusting of the window-leveling parameters of two-dimensional
(2D) x-ray images. In order to predict the parameters, a convo-
lutional neural network was employed. The model was optimized
in two phases. Initially, selected training hyperparameters were
optimized, namely the batch size, the optimizer and its learning
rate. Subsequently, its architecture was optimized. Accordingly,
the model’s architecture was successively simplified to minimize
the required computational time for predicting the window-
leveling parameters.

The proposed network comprises one convolutional layer and
two fully-connected layers to generate the window-leveling pa-
rameters. The mean square error for the two parameters,
namely the window-width and the window-level, was 0.0033 and
0.0013, respectively, and the mean absolute percentage error was
4.61%/5.16%, respectively.

The proposed model demonstrated robust performance in auto-
matic window-leveling adjustment of 2D x-ray images and offers
space for further investigation.

Index Terms—Deep Learning, Convolutional Neural Network,
Window-Leveling, X-ray Images, Image Enhancement.

I. INTRODUCTION

RTIFICIAL intelligence (Al) is currently a tool utilized

for a multitude of practical applications across various
fields, including language processing, automation of routine
tasks, as well as image analysis [1]. The recent rapid develop-
ments of this technology can be attributed to three key factors:
advances in the development of high-performance computing
hardware, an increase in the availability of data for training
the Al models, as well as a progress in the development of
learning algorithms [1], [2], [3]. In medical image analysis, in
particular the employment of deep learning (DL), a subset of
Al [1], has lead to the development of novel approaches to
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several key tasks in this domain [4]. These key tasks include
image registration, image reconstruction, image segmentation,
computer-aided detection and diagnosis, as well as image
enhancement [4].

The implementation of DL has the potential to enhance the
efficiency of clinical workflows by automating routing tasks
[5]. For example, DL technology can assist radiologists in their
daily decision-making processes by detecting and classifying
pathological findings in medical images or by giving state-
ments about the progression of certain diseases, such as the
extent of tumorous tissue [4]. Moreover, the integration of DL
technology has been demonstrated to improve the accuracy of
diagnostic predictions. The predictions made by human experts
supported by DL technology were more accurate than those
made by either humans or DL technology alone [6]. Another
benefit of employing DL technology in the field of medical
image analysis is an enhanced image quality while reducing
the scanning time or the radiation dose, thereby increasing
patient safety [4], [7], [8].

One of the principal technologies in medical image analysis is
image enhancement [4], whereby the objective is to increase
the quality of an image. This is especially required for x-
ray images as they frequently suffer from poor quality due
to factors such as noise, scattering, blurring and low contrast.
The reason for this is the high scanning complexity of the
body tissues which arises during radiography [9]. Traditional
enhancement techniques to increase the contrast of an x-ray
image include methods such as histogram equalization (HE)
and the application of the contrast limited adaptive histogram
equalization (CLAHE) filter. When applying HE to an image,
the pixel values of the images are redistributed in order to
achieve a more uniform distribution of the pixel intensity
values [10], [11], [12]. Also the CLAHE filter performs the
HE operation in a first step. However, in the CLAHE filter,
HE is not applied to the entire image at once, but to discrete
image tiles, subregions of the images. In addition, the contrast
is limited with the objective to reduce noise amplification in
the image. Finally, CLAHE performs bilinear interpolation to
provide smooth transitions between the distinct image tiles
[13]. A third technique to increase the quality of an x-ray
image is window-leveling, a linear intensity transformation
that improves the visibility of structures within a specific
region of interest in the image. Window-leveling maps the
pixel values of an image within a defined intensity range. The
operation sets the pixel values below the lower boundary of
the specified range to black and assigns the brightest possible
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display value to pixel values exceeding the upper limit of
the range [10]. The displayed range is defined by a window-
level (WL) wl and a window-width (WW) ww, whereby WL
represents the value in the middle of WW. WW is defined by a
lower limit w;,,, and an upper limit w,,,. Consequently, WW
is calculated by ww = wyp—wje, and WL by wl = WupHWiow
[10], [14].

The most traditional and straightforward method for perform-
ing window-leveling is manual [15]. However, this approach
is energy-intensive and time-consuming [4].

Consequently, algorithms to automatically adjust window-
leveling parameters, i.e. the values for WW and WL, have been
developed. Examples can be found in the literature and can be
divided into two groups: those that use traditional techniques
and those that use Al-based technology.

Examples for approaches that employ traditional image pro-
cessing techniques include the algorithm, presented by Tan
et al. The proposed method automatically adjusts WW and
WL not for medical images, but for high-dynamic industrial
x-ray images. The algorithm is based on the short-term energy
of the gray level histogram. When tested in practice, the
developed algorithm demonstrated robust performance [15].
Hoeschen et al. proposed in their study an algorithm to adapt
the WW and WL values in medical x-ray images containing
implants. This algorithm is also based on the gray level
histogram, as it detects the border between the gray level
block of anatomical structures and the grey level block of
artificial structures. Subsequently, the detected border is set to
90% of the brightest displayable value [16]. Another method,
designated as the GRAIL (Gabor-relying adjustment of image
levels) algorithm, was presented by Albiol et al. Their devel-
oped methodology iteratively adjusts the gray level values of
mammographic images based on a perceptual metric, utilizing
special filters, namely the Gabor filters [17]. Yeganeh et al.
proposed a window-leveling methodology for medical images
that employs a structural fidelity measure, which assesses
image quality. With their algorithm they overcome the limita-
tions of window-leveling based on linear gray level mapping
[18]. Nikvand et al. also presented an approach for adaptive
window-leveling of medical images. Their approach involves
an information-theoretic measure based on the concept of nor-
malized information distance, in conjunction with the theory
of Kolmogorov complexity [19]. MedPhoton GmbH (hereafter
referred to as “medPhoton”) employs an automatic window-
leveling (AWL) algorithm using two distinct approaches. In
the first approach, the window is set from the minimum pixel
value of the image to the maximum pixel value. In the second
approach, the window is defined by a threshold that depends
on the frequency of the pixel value that occurs most frequently
in the image. Depending on the x-ray imaging modality, the
first or the second approach is applied. Nevertheless, in the
past, these two approaches have resulted in some instances in
unsatisfactory visual representations of the images.

As previously stated, Al technology has also been employed
in the development of window-leveling methods. Early work
includes the two-stage neural network, presented by Ohhashi
et al. in 1991, to compute the window-leveling parameters

for magnetic resonance (MR) images. The proposed algorithm
includes the extraction of features from the gray level his-
togram of the images [20]. In 2000, Lai and Fang employed a
hierarchical neural network to adjust the WW and WL values
for MR images. Their network uses features extracted from the
wavelet histogram in addition to spatial statistical information
[21]. In 2005, the same authors proposed an advanced method
to automatically adjust the window-leveling parameters of
MR images, making it more adaptive to different viewing
conditions [22]. A common limitation of the aforementioned
Al-based window-leveling methods is the necessity of feature
extraction prior to computing the WW and WL values. The
algorithm proposed by Zhao et al. addressed this limitation by
employing a convolutional neural network (CNN) for window-
leveling adjustment. As CNNs can directly extract features
from the input image, the need of prior feature extraction
was eliminated [14]. However, also this approach was limited
to MR images. Another methods for the automatic window-
leveling adjustment of MR images was proposed by Sundaran
et al. Their approach differs from the aforementioned method,
as is suppresses in a first step the background pixels of the
MR image using a DL model. Subsequently, the foreground
pixels are window-leveled using a non-Al-based algorithm.
However, Sundaran et al. did not provide further description
of this approach [23].

A review of the literature reveals that the majority of automatic
window-leveling approaches, particularly those based on Al,
are constrained to MR images. To the best of our knowledge,
no study has yet presented an Al-based algorithm for predict-
ing optimal WW and WL values for x-ray images.

This paper proposes an Al-based approach for automatically
adjusting the window-leveling parameters of two-dimensional
(2D) x-ray images by employing a DL model. A convolutional
neural network (CNN) is employed in order to predict optimal
window-leveling parameter, i.e., the values for WW and WL.
These predicted parameters can then be utilized to visualize the
x-ray image. This Al-based approach should, in the long term,
provide an alternative to medPhoton’s established window-
leveling algorithms.

II. METHODS
A. Software and hardware

The programming language utilized was Python (version
3.8.18, Python Software Foundation). The open-source Python
libraries PyTorch [24] and TorchlO [25] were employed for
training the model and for pre-processing the x-ray images,
respectively [26]. Training was performed on a NVIDIA
graphics processing unit (GPU), namely the NVIDIA RTX
3500 Ada Generation Laptop GPU, utilizing the CUDA (com-
pute unified device architecture) toolkit (version 11.3.1). In the
C++ environment, the model was tested on a NVIDIA RTX
A2000 8G laptop GPU.

B. Dataset

A dataset of 800 anonymized x-ray images, provided by
medPhoton, was selected, covering various anatomical regions,
including the pelvis, breast, lung, abdomen, cochlea, and the
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spine. The dataset was randomly split into three subsets: a
training dataset, a validation dataset, and a testing dataset with
a split ratio of 0.7/0.15/0.15. Accordingly, the network was
trained on 559 x-ray images, validated on 121 images, and
tested on 120 images. To ensure reproducibility, a manual seed
of 42 was set.

For labeling the selected x-ray images, medPhoton’s AWL
algorithm was applied on them. As all images in the dataset
may be used for marketing purposes at medPhoton, it was
ensured that the AWL algorithm resulted in a satisfactory
visual representation. For this reason, a certain level of quality
for the computed values for WW and WL was reasonably
assumed, so that these values were employed as labels for the
dataset.

C. Image pre-processing

Prior to being fed into the DL model, the images underwent

several pre-processing steps. In a first step, it was ensured that
the input image was stored in transmission space, given that
x-ray images are, in some cases, for efficiency reasons, stored
as a ushort, an unsigned integer data type. Transmission space,
however, ranges from (0,1). A pixel value of zero indicates
that no radiation was detected by the x-ray detector and that
all radiation was absorbed by the imaged object. In contrast,
a pixel value of one in transmission space indicates that all
radiation was detected by the x-ray detector and no radiation
was absorbed by the imaged object.
Rescaling to transmission space transforms the ushort integer
pixel value p;,; linearly to its floating point transmission value
Dfloat by using the rescale intercept i,.scqle and the rescale
slope Srescale- These two parameters are stored in the metadata
of the x-ray images. Mathematically, rescaling to transmission
space is described by the following equation:

DPfloat = Pint * Srescale + irescale (1)

Consequently, also the WW and WL values that were used as
labels had to lie within the range of (0, 1). This was ensured
by reviewing the computed label values.

The implementation of that first pre-processing steps guaran-
tees that, regardless of the x-ray image that is input to the
model (including x-rays that are not part of the dataset), its
pixel values are stored in the same image space. Simultane-
ously, the input is normalized, as the transmission space ranges
from zero to one.

In the second pre-processing step, the image was cropped to
size of the x-ray collimator, ensuring that only the relevant
section of the image was processed by the DL model. The
final step involved resizing the image to the input size of the
model. Figure 2 in Appendix A illustrates the various pre-
processing steps.

D. Deep learning model

As DL model a CNN was employed. Its architecture was
inspired by the work of Jiang et al. [27], who also proposed
a CNN for predicting multiple continuous numerical values
from an input image. However, the context of their study
differed from that of the present paper. The output layer

of the model presented by Jiang et al. was modified since
only two output values were required for the purpose of
the present paper, namely the WW and the WL value. The
architecture of the model is depicted in Figure 1. As illustrated
in the figure, the CNN model comprised five convolutional
blocks. Each block included batch normalization following
the convolution, the rectified linear unit (ReLU) function as
the activation function, and max pooling. Two fully-connected
linear layers were subsequently employed to generate the
output. The required dimensions of the input image for the
model were (C, H, W) = (1,224, 224).

For training the DL model, the Huber function was selected
as the loss function. Additionally, a baseline configuration of
the following hyperparameters was selected: A batch size of
64 was utilized, and the Adam optimizer was selected with a
learning rate of 0.001.

E. Evaluation and optimization of the model

The DL model was trained for 60 epochs with the baseline
hyperparameter configuration. Following each training epoch,
the model was validated and saved. After 60 epochs of train-
ing, the model with the lowest validation loss was selected and
evaluated. To evaluate the selected model, the mean squared
error (MSE) as well as the mean absolute percentage error
(MAPE) were calculated. These measures were calculated for
both outputs. Consequently, the MSE for WW and for WL
was calculated, and the MAPE for WW and for WL, as
mathematically expressed by following equations:

n

1
MSEww = — i Ji i 2 2
- ;(ww ww;) (2)
MSE for WL:
1 & ~
MSEy ==Y (wl; — wl;) 3)
"
MAPE for WW:
1o P — Ww;
MAPE,, =~ (wwi = wwi) |40 4)
n ww;
MAPE for WL:
MAPE,, = — —= %100 5
= ; o | 5)

where ww and wl correspond to the predicted WW and WL
values by the model and n to the number of samples in the
dataset.
Subsequently, a series of hyperparameter configurations were
tested. In each configuration, the model was trained for 60
epochs. The model with the lowest validation loss among
the total 60 saved models was selected for evaluation. Table
I provides an overview of the different variations of tested
hyperparameters.

The model exhibiting the lowest evaluation metrics was
selected for further optimization.
In the second phase of optimization, the architecture was
reduced to the greatest extent possible while maintaining the
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Fig. 1: Architecture of the customized CNN. Adapted from [27].

TABLE I: Overview of hyperparameter variations.

TABLE III: Evaluation metrics for custom model.

Hyperparameter Baseline Variation 1  Variation 2  Variation 3 MSE WW  MSE level MAPE WW / %  MAPE level / %
Batch size 64 32 16 1 0.0069 0.0050 8.4402 10.0396
Optimizer Adam AdaDelta SGD RMSProp

Learning rate 0.001 0.1 0.01 0.0001

prediction accuracy as assessed by the evaluation metrics.
The objective of this optimization step was to reduce the file
size of the model to the greatest extent possible in order to
enhance the computational speed of the model. The required
computational time was tested in C++ environment, given
that at medPhoton the majority of code runs in C++. For
purposes of comparison, the average computational time of
medPhoton’s AWL algorithm was calculated utilizing the 120
x-ray images of the test dataset.

The subsequent table illustrates the downsized versions. The
convolutional blocks were successively removed and the di-
mensions of the input image were additionally reduced.

TABLE II: Overview of downsized versions of the CNN.

Version  Convolutional blocks  Input size
A 5 224 x 224
B 4 112 x 112
C 3 56 x 56
D 2 28 x 28
E 1 14 x 14

III. RESULTS
A. Baseline model

The model that was trained with the baseline configuration,
which exhibited the lowest validation loss, resulted in the
following evaluation metrics:

Figure 3 in Appendix B provides a visual representation
of the predicted WW and WL values in comparison to the
corresponding label WW and WL values.

B. Model optimization

Various hyperparameter configurations were assessed in
order to optimize the model. Consequently, a single hyperpa-
rameter was modified at a time, and the resulting configuration
was evaluated. In the event that a distinct variation of the
hyperparameter, as compared to the baseline configuration,
demonstrated superior predictive performance, as assessed by
the evaluation metrics, this variation was then retained in
subsequent configurations. This approach resulted in the tested
hyperparameter configurations, which are presented in Table
IV. The parameters that were compared in the single config-
urations are marked in blue. Table V presents the evaluation

TABLE 1IV: Hyperparameter configurations during optimiza-
tion.

Configuration  Batch size  Optimizer = Learning rate
1 64 Adam 0.001
2 32 Adam 0.001
3 16 Adam 0.001
4 1 Adam 0.001
5 16 AdaDelta 0.001
6 16 SGD 0.001
7 16 RMSProp 0.001
8 16 Adam 0.1
9 16 Adam 0.01
10 16 Adam 0.0001

metrics that resulted for the different hyperparameter config-
urations. Figure 4 in Appendix B illustrates the comparison
between the predicted WW and WL values of the model with
optimized hyperparameter configuration and the WW and WL
label values.
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TABLE V: Evaluation metrics for hyperparameter optimiza-
tion configurations.

Conf.” MSE WW MSE WL MAPE WW/ % MAPE WL/ %
1 0.0069 0.0050 8.4402 10.0396
2 0.0040 0.0010 6.4083 4.0324
3 0.0029 0.0004 5.7240 2.4765
4 0.0202 0.0058 13.262 10.1583
5 0.0089 0.0052 9.5927 10.1583
6 0.0102 0.0086 9.9989 12.6719
7 0.0123 0.0085 12.3563 15.0363
8 0.0139 0.0121 14.0974 19.3825
9 0.0124 0.0022 12.5722 7.5410
10 0.0023 0.0006 3.0149 2.4980

* Configuration

With regard to the second optimization phase of the model,
in which the architecture of the model was reduced to the
greatest extent possible, the resulting number of parameters
and file sizes are presented in Table VI.

TABLE VI: Numbers of parameters and file sizes of downsized
models.

Version Parameters Size / MB
A 21 251 490 83.0
B 9952 154 38.9
C 4 832 570 18.9
D 1 198 958 4.7
E 589 790 2.3

The evaluation metrics, as presented in Table VII, resulted
from the distinct downsized model versions.

TABLE VII: Evaluation metrics for size optimization.

Vers." MSE WW MSE WL MAPE WW/ % MAPE WL/ %
A 0.0023 0.0006 3.0149 2.4980
B 0.0031 0.0008 5.1493 3.2366
C 0.0027 0.0009 3.9129 3.8177
D 0.0025 0.0018 4.1020 5.2948
E 0.0033 0.0013 4.6136 5.1563
* Version

Figure 5 in Appendix B provides a further comparison

between the label WW and WL values and the WW and WL
values predicted by the model with the smallest architecture
(version E).
With regard to the computational time, the models in version
A and version E were tested in C++ environment. Version A
required 7 milliseconds (ms) to predict the window-leveling
parameters, whereas version E required only 3 ms. The average
time for the AWL algorithm of medPhoton on the x-rays
images of the test dataset was found to be 10 ms, with a
range of 4 ms to 18 ms.

IV. DISCUSSION
A. Main findings
A comparison of Figure 3 and Figure 4 reveals that hyperpa-
rameter optimization had a notable impact on the performance

of the model. The dotted line, which represents the predicted
WW and WL values of the model is in Figure 4 much closer

to the solid line, representing the label values, than in Figure
3. This is supported by the evaluation metrics in Table V,
which demonstrate that in the last configuration the metrics
are notably smaller than those observed in the first configura-
tion, which assessed the baseline configuration. Especially the
selected batch size of 16 in the third configuration made an
considerable difference as well as the selected learning rate of
0.0001. Consequently, the best results were obtained in the last
configuration, where a batch size of 16 was utilized and the
Adam algorithm as an optimizer with a learning rate of 0.0001.
The evaluation metrics for this hyperparameter configuration
were the lowest with a MSE WW/WL of 0.0023/0.0006 and
a MAPE WW/WL of 3.01%/2.50%.

As evidenced in Table VII, the number of convolutional blocks
in the CNN model proved to be a less important factor in the
performance of the model than the training hyperparameter
configuration. Despite successive reduction in the architecture,
the model performance remained robust. The model with the
smallest architecture still exhibited low evaluation metrics,
with a MSE WW/WL of 0.0033/0.0013 and a MAPE WW/WL
of 4.61%/5.16%. The number of parameters as well as the file
size could be reduced by 97% for the smallest model in version
E in comparison to the model in version A.

Please refer to Appendix C for the comparison between
several example x-ray images visualized with the predictions
of the distinct models: In the left column, the x-rays are
visualized with the label WW and WL values, as computed
by the AWL algorithm. The middle left column displays
the images visualized with the parameters predicted by the
baseline model. The middle right column visualized the x-rays
with the parameters predicted by the model with optimized
hyperparameter configuration and the right column visualizes
the x-rays with the parameters predicted by the downsized
model (version E). A comparsion of the columns reveals that
no notable difference between the x-ray imges is visible.
Furthermore, progress was made with regard to the compu-
tational speed. A comparison of the required computational
time of the AWL algorithm and the CNN model in version A
revealed a reduction of 30% in the latter. In comparison of the
AWL algorithm to the CNN model in version E, the required
computational time was decreased by 70%.

B. Comparison to related literature

A comparison to the studies of Ohhashi et al. [20] and Lai
et al. [21], [22] reveals that our Al-based window-leveling
approach has the advantage of eliminating the need for prior
feature extraction from the images, as this is done by the CNN
model.

The results of this paper can also be compared to the study
presented by Zhao et al. As previously mentioned, they
proposed a CNN to predict the values for WW and WL
for MR images [14]. The structure of the network presented
by the authors comprised three principal components. In the
first component, the dimensions of the input MR image were
reduced. The second component of the network compromised
five convolutional blocks, each containing three convolutional
layers, with each layer followed by the ReLU activation
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function and a pooling layer at the end of the block. In the
third component, three fully-connected layers were employed
to generate the two output values. In our study, the reduction of
the dimensions of the input image is part of the pre-processing
process. However, without considering the first component of
their proposed network, their model remains notably more
complex compared to our network.

Zhao et al. also employed MAPE as an evaluation metric for
the predicted WW and WL values. When evaluated using this
metric alone, our model demonstrated equal performance, with
a MAPE a MAPE WW/WL of 4.61%/5.16% compared to a
MAPE WW/WL of 4.72%/5.17% of the proposed model by
Zhao et al. [14]. However, a direct comparison between the
two models is challenging, given the distinct image charac-
teristics of x-ray images and MR images [28]. To achieve
a meaningful comparison, a more comprehensive analysis of
these differences is necessary.

C. Limitations

One limitation of this study was the quality of the labels
which were utilized during training the model. A simple
window-leveling algorithm was employed to generate the
labels. Their quality could be enhanced by manual window-
leveling the x-ray images by a medical expert, such as a
radiologist. However, this was not feasible within the scope
of this paper. Nevertheless, through the use of x-ray images
that may be employed for marketing purposes a certain quality
level of the labels was ensured.

Moreover, it was not feasible to employ a radiologist to asses
the results, i.e. the x-ray images visualized with the window-
leveling parameters predicted by the developed model. This
could be subjected to future studies.

A further limitation of this study was that it was constrained
to 2D images. The developed network only enables Al-based
window-leveling of 2D x-ray images. However, this opens up
possibilities for future investigation, whereby the presented
CNN network could be further developed to also enable
window-leveling of three-dimensional (3D) x-rays, such as
computed tomography images. Moreover, this study was lim-
ited by the fact that only images of one imaging modality
were included, namely x-ray images. Networks have already
been developed to enable Al-based window-leveling of MRI
images [14], [23]. The subsequent step would be to develop
a network that includes images of more than one imaging
modality, enabling the enhancement in visual representation
of images from various modalities, including, for example,
radiography, MR imaging, and ultrasound imaging.

V. CONCLUSION

The objective of this paper was the development of an Al-
based approach enabling automatic window-leveling adjust-
ment of 2D x-ray images. This was achieved by employing
a CNN model which was trained to predict optimal window-
leveling parameters, i.e. values for WW and WL. The opti-
mized CNN model comprised one convolutional block and
two fully connected layers at the end, generating the output
of the model.

The work shows promising results and can be used as a staring
point for future work including further development of the
presented network to enable window-leveling for a wider range
of medical images, including 3D images as well as images of
other imaging modalities.
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APPENDIX A
IMAGE PRE-PROCESSING
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Fig. 2: Image pre-processing steps. Note that rescaling in the first step is not visible as the intensity pixel values were only
linearly transformed.
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APPENDIX B
COMPARISON OF LABEL AND PREDICTED VALUES

1.14 —— Label WW
——=- Predicted WW
—— Label WL
1.0 1 —==- Predicted WL
0.9 1
0.8 A ‘
[}
1
w
g Vi V]
g 0.7 1 : % }‘
| ’ )
0.6 '
v
»
0.5 A 1
0.4 i
0.3 - T T T T T T T
0 20 40 60 80 100 120
Image Index

Fig. 3: Comparison between the label and the predicted values: The solid line presents the label window-leveling values
computed by the AWL algorithm and the dotted line presents the values predicted by the baseline model.

1.1 A
— Label WW
—=—=- Predicted WW
1.0 1 —— Label WL

=== Predicted WL

0.9 1 !
0.8 1 -
[
I
074 A
\
{V\;\

———

P

— -

Values

0.6

0.5 A

0.4

0.3

20 40 60 80 100 120
Image Index

o 4

Fig. 4: Comparison between the label and the predicted values: The solid line presents the label window-leveling values
computed by the AWL algorithm and the dotted line presents the values predicted by the model trained with optimized
hyperparameter.
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Fig. 5: Comparison between the label and the predicted values: The solid line presents the label window-leveling values
computed by the AWL algorithm and the dotted line presents the values predicted by the downsized model (version E).
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APPENDIX C
EXAMPLE X-RAYS

Labeled images Baseline model Hyperparameter optimzed model Size optimized model

Fig. 6: Example x-rays visualized with the label and the predicted window-leveling parameters. Left column: X-rays visualized
with label values. Left middle row: X-rays visualized with parameters predicted by baseline model. Right middle column:
X-rays visualized with parameters predicted by the model with optimized hyperparameters. Right column: X-rays visualized
with parameters predicted by the model with optimized size.
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Labeled images Custom baseline model Hyperparameter optimzed model Size optimized model

Fig. 6 (continued): Example x-rays visualized with the label and the predicted window-leveling parameters. Left column: X-rays
visualized with label values. Left middle row: X-rays visualized with parameters predicted by baseline model. Right middle
column: X-rays visualized with parameters predicted by the model with optimized hyperparameters. Right column: X-rays
visualized with parameters predicted by the model with optimized size.



